We consider the Schrodinger type differential expression $$ H_V= abla^* abla+V, $$ where $ abla$ is a $C^{infty}$-bounded Hermitian connection on a Hermitian vector bundle $E$ of bounded geometry over a manifold of bounded geometry $(M,g)$ with metric $g$ and positive $C^{infty}$-bounded measure $dmu$, and $V=V_1+V_2$, where $0leq V_1in L_{ m loc}^1(mathop{ m End} E)$ and $0geq V_2in L_{ m loc}^1(mathop{ m End} E)$ are linear self-adjoint bundle endomorphisms. We give a sufficient condition for self-adjointness of the operator $S$ in $L^2(E)$ defined by $Su=H_Vu$ for all $uinmathop{ m Dom}(S)={uin W^{1,2}(E)colon intlangle V_1u,u angle,dmu0$ is a constant and $ ugeq 0$ is a positive distribution on $M$
We give a condition of essential self-adjointness for magnetic Schrödinger operators on non-compact ...
We consider the Schr\"odinger operators $H_V=-\Delta_g+V$ with singular potentials $V$ on general $n...
We study a positivity preservation property for Schrödinger operators with singular potential on geo...
AbstractWe consider a Schrödinger-type differential expression HV=∇∗∇+V, where ∇ is a C∞-bounded Her...
AbstractWe prove self-adjointness of the Schrödinger type operator HV=∇∗∇+V, where ∇ is a Hermitian ...
AbstractWe consider a family of Schrödinger-type differential expressions L(κ)=D2+V+κV(1), where κ∈C...
International audienceWe study $H=D^*D+V$, where $D$ is a first order elliptic differential operator...
AbstractWe prove essential self-adjointness for semi-bounded below magnetic Schrödinger operators on...
Abstract. We consider a Schrödinger differential expression L0 = ∆M+V0 on a (not necessar-ily compl...
Abstract. Given a Hermitian vector bundle over an infinite weighted graph, we define the Laplacian a...
В данной работе рассматривается вопрос о существенной самосопряженности оператора Шредингера с сильн...
summary:We consider a Schrödinger-type differential expression $H_V=\nabla^*\nabla+V$, where $\nabla...
We provide a shorter and more transparent proof of a result by I. Oleinik [25, 26, 27]. It gives a s...
Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome / CNR - Consiglio ...
We give sufficient conditions for the essential self-adjointness of perturbed biharmonic operators a...
We give a condition of essential self-adjointness for magnetic Schrödinger operators on non-compact ...
We consider the Schr\"odinger operators $H_V=-\Delta_g+V$ with singular potentials $V$ on general $n...
We study a positivity preservation property for Schrödinger operators with singular potential on geo...
AbstractWe consider a Schrödinger-type differential expression HV=∇∗∇+V, where ∇ is a C∞-bounded Her...
AbstractWe prove self-adjointness of the Schrödinger type operator HV=∇∗∇+V, where ∇ is a Hermitian ...
AbstractWe consider a family of Schrödinger-type differential expressions L(κ)=D2+V+κV(1), where κ∈C...
International audienceWe study $H=D^*D+V$, where $D$ is a first order elliptic differential operator...
AbstractWe prove essential self-adjointness for semi-bounded below magnetic Schrödinger operators on...
Abstract. We consider a Schrödinger differential expression L0 = ∆M+V0 on a (not necessar-ily compl...
Abstract. Given a Hermitian vector bundle over an infinite weighted graph, we define the Laplacian a...
В данной работе рассматривается вопрос о существенной самосопряженности оператора Шредингера с сильн...
summary:We consider a Schrödinger-type differential expression $H_V=\nabla^*\nabla+V$, where $\nabla...
We provide a shorter and more transparent proof of a result by I. Oleinik [25, 26, 27]. It gives a s...
Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome / CNR - Consiglio ...
We give sufficient conditions for the essential self-adjointness of perturbed biharmonic operators a...
We give a condition of essential self-adjointness for magnetic Schrödinger operators on non-compact ...
We consider the Schr\"odinger operators $H_V=-\Delta_g+V$ with singular potentials $V$ on general $n...
We study a positivity preservation property for Schrödinger operators with singular potential on geo...